Differential induction of chromosomal instability by DNA strand-breaking agents.

نویسندگان

  • C L Limoli
  • M I Kaplan
  • J W Phillips
  • G M Adair
  • W F Morgan
چکیده

To investigate the role of DNA strand breakage as the molecular lesion responsible for initiating genomic instability, five different strand-breaking agents, bleomycin, neocarzinostatin, hydrogen peroxide, restriction endonucleases, and ionizing radiation, were examined for their capacity to induce delayed chromosomal instability. These studies used GM10115 human-hamster hybrid cells, which contain one copy of human chromosome 4 in a background of 20-24 hamster chromosomes. Chromosomal instability was investigated using fluorescence in situ hybridization to visualize chromosomal rearrangements involving the human chromosome. Rearrangements are detected multiple generations after treatment, in clonal populations derived from single progenitor cells surviving treatment of the specified DNA-damaging agents. Clastogenic and cytotoxic activities of all agents were tested by examining chromosome aberration yields in first-division metaphases and by clonogenic survival assays. Analysis of over 250 individual clones representing over 50,000 metaphases demonstrates that when compared at comparable levels of cell kill, ionizing radiation, bleomycin, and neocarzinostatin are equally effective at eliciting delayed genomic instability. These observations document, for the first time, the persistent destabilization of chromosomes following chemical treatment. In contrast, the analysis of nearly 300 clones and 60,000 metaphases, involving treatment with four different restriction endonucleases and/or hydrogen peroxide, did not show any delayed chromosomal instability. These data indicate that DNA strand breakage per se does not necessarily lead to chromosomal instability but that the complexity or quality of DNA strand breaks are important in initiating this phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ

Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires th...

متن کامل

A brief review on chemical agents involved in chromosomal aberrations in military wars

Chromosomal abnormalities are able to produce genetic instability, which is the main cause of many diseases. Cytogenetics is analysis of any kind of chromosomal abnormalities. Chromosomal alterations can be divided into structural and numerical abnormalities, both of which play a significant role in the development of many diseases, particularly cancer. Today, most cytogenetic analyzes are perf...

متن کامل

Chromosomal Replication Complexity: A Novel DNA Metrics and Genome Instability Factor

As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry ab...

متن کامل

Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe.

Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 57 18  شماره 

صفحات  -

تاریخ انتشار 1997